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Abstract

We are interested in fitting a surface model such as a
tensor-product spline to range image data. This is com-
monly done by finding control points which minimize a com-
pound cost including the goodness of fit and a regularizer,
balanced by a regularization parameter. Many approaches
choose this parameter as the minimizer of, for example,
the cross-validation score or the L-curve criterion. Most
of these criteria are expensive to compute and difficult to
minimize.

We propose a novel criterion, the L-tangent norm, which
overcomes these drawbacks. Even though it is empirical,
it gives sensible results with a much lower computational
cost. This new criterion has been successfully tested with
synthetic and real range image data, and shows a behavior
similar to cross-validation.

1. Introduction

This paper is concerned with the reconstruction of a sur-
face from range image data (also known as 2.5D data). Such
data are obtained by range sensors such as Time-of-Flight
cameras or stereo imaging. Reconstructing a surface from
scattered data points is important for computing geodesics,
texture-mapping, global shape editing, etc.

A surface reconstructed from a range image is usually
described as a functionf : R

2 → R called a surface
model. A set of parameters controls the surface shape.
Many models have been proposed including the Thin-Plate
Spline [2, 6, 14, 15], Radial Basis Functions [8, 12, 13],
Bézier surfaces [7] and tensor-product splines over the B-
spline basis [3,4].

The classical approach to reconstruct a surface is by find-
ing the set of parameters which minimizes a cost function.
This cost function has two terms: a term reflecting the good-
ness of fit and a regularization term. These two terms are
related by a parameter, the so-calledregularization param-

eter, which controls the importance given to the regulariza-
tion. A small value for the regularization parameter results
in a surface passing closely to the data points but prone to
overfitting. On the contrary, a large regularization parame-
ter results in a smooth surface which may not approximate
the data very well.

One of the challenges in surface reconstruction (and in
many other data fitting problems) is selecting the regulariza-
tion parameter automatically. Many approaches have been
proposed. Two of the mostly used methods are the cross-
validation score minimization [16] and the L-curve criterion
maximization [9,11]. Cross-validation intends to maximize
the ability of the reconstructed surface to generalize. TheL-
curve criterion selects the regularization parameter by con-
necting the residual (i.e. the closeness of the surface to the
data points) and the solution norm (i.e. the smoothness of
the surface). Unfortunately, these criteria are generallyex-
pensive to compute. Moreover, they require to solve opti-
mization problems that are generally difficult. We propose
a novel heuristic to select the regularization parameter: the
L-tangent norm. This new approach is interesting for two
main reasons. First, it is cheap to compute. Second, its
‘shape’ and numerical behavior make the selection of the
regularization parameter easy.

Paper organization. Section 2 is dedicated to the prob-
lem of reconstructing the surface given a regularization pa-
rameter. Section 3 is a short review of existing methods to
automatically select the regularization parameter. Then,our
new approach, the L-tangent norm, is presented in section 4.
Finally, experimental results are shown in section 5.

Notations. Scalars are in italics,e.g. x, vectors in bold
right fonts,e.g. p, and matrices in capitals,e.g. M . The
vector and matrix transpose is denoted with the symbolT,
e.g. MT. Intervals are denoted with square brackets,e.g.
[a, b], ]a, b[ and]a, b] for respectively a closed, an open and
a half-open interval.
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2. Background

2.1. Reconstruction Given the Regularization Pa-
rameter

Assume one is given a set ofn range data points. Such a
set is composed ofn twodimensional points(xi, yi) ∈ R

2,
associated to depth informationzi ∈ R. This set of points
is denoted:

{(xi, yi) ↔ zi | i = 1, . . . , n} . (1)

The surface model is a function ofh unknown parame-

tersp =
[

p1, . . . , ph

]T

∈ R
h that control the shape of the

surface:

f(·;p) : Ω ⊂ R
2 −→ R

(x, y) 7−→ f(x, y;p).
(2)

The surface model we use in this paper is given in sec-
tion 2.2. The range surface reconstruction problem consists
in finding the best set of parametersp∗

λ ∈ R
h (which de-

pends onλ) such that:

p∗

λ = arg min
p∈Rh

Ed(p) +
λ

1 − λ
Er(p) λ ∈]0, 1[, (3)

whereEd andEr are respectively called thedata termand
the regularization term. The data term is a function that
measures the closeness of the surface to the whole set of
data points. The regularization term is a measure of the sur-
face regularity (or smoothness). These two terms are related
by theregularization parameterλ which controls the trade-
off between the goodness of fit and the regularity. In the
limit λ → 0, the surface is likely to overfit the data. Ifλ

is large, the surface becomes very smooth but may not re-
flect the data very well ; for instance, with many models,
the reconstructed surface is almost a plane whenλ is close
to 1.

The data term and the regularization term can be chosen
as respectively the Mean Squared Residual (MSR) and the
bending energy:

Ed(p) =
1

n

n
∑

i=1

(f(xi, yi;p) − zi)
2 (4)

Er(p) =

∫∫

Ω

2
∑

d=0

(

2

d

)(

∂2f(·;p)

∂x2−d∂yd
(x, y)

)2

dxdy. (5)

We consider that the surface model is linear with respect
to its parameter:

∀(x, y) ∈ R
2, ∃ vx,y ∈ R

h : f(x, y;p) = vT

x,yp,

The MSR can be written as:

Ed(p) = ‖Mp− z‖
2
2 (6)

whereM is thecollocation matrixandz is the vector con-
taining all the depths:

M =
[

vT

x1,y1
. . . vT

xn,yn

]T

∈ R
n×h,

z =
[

z1 . . . zn

]T

∈ R
n.

The bending energy can be approximated by discretizing
the integral sum of equation (5) over a regular grid:

Er(p) ≈
1

ab

a−1
∑

i=0

b−1
∑

j=0

2
∑

d=0

(

2

d

)

(

∂2f
(

i
a , j

b ;p
)

∂x2−d∂yd

)2

(7)

⇐⇒ Er(p) ≈ ‖Rp‖
2
2 (8)

whereR is theregularization matrix. Note that the partial
derivatives of a linear model are also linear with respect to
p, i.e., for all d ∈ {0, 1, 2} and for all(x, y) ∈ R

2, there
existswx,y,d ∈ R

h such that:

∂2f(x, y;p)

∂x2−d∂yd
= wT

x,y,dp. (9)

If rT

k is thekth row ofR, then we have that:

rT

dab+ib+j+1 =

(

2

d

)

wT
i
a

, j

b
,d

. (10)

Finally, equation (3) is equivalent to a Linear Least
Squares (LLS) minimization problem [1]:

p∗

λ = arg min
p∈Rh

∥

∥

∥

∥

[

M
λ

1−λR

]

p−

[

z

0

]∥

∥

∥

∥

2

2

. (11)

The solution of this problem is given by:

p∗

λ =

(

MTM +
(

λ
1−λ

)2

RTR

)−1

MTz. (12)

2.2. The Surface Model

We have chosen to use the tensor-product splines over
the B-spline basis (TPBS) model. A reason is that the in-
fluence of a control point is bounded to its neighborhood
due to the local support of the B-splines basis [3,4,7]. This
property leads to sparse collocation and regularization ma-
trices. This makes the computations fast.

We remind the reader some basic facts about B-splines.
An extensive review of splines can be found in [3,4,7].

The B-spline of degreek > 0 (orderk + 1) having the
increasing knot sequenceµ0 ≤ . . . ≤ µg+1 can be defined
recursively by:















Ni,1(x) = 1 if x ∈ [µi, µi+1[
Ni,1(x) = 0 if x 6∈ [µi, µi+1[
Ni,k+1(x) = x−µi

µi+k−µi
Ni,k(x)

+ µi+k+1−x
µi+k+1−µi+1

Ni+1,k(x).

(13)
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A TPBS is defined as a linear combination of the B-
spline basis functions weighted by thecontrol pointsCi,j :

s(x, y) =

g1
∑

i=−k1

g2
∑

j=−k2

Ci,jNi,k1+1(x)Nj,k2+1(y). (14)

Note that equation (14) is linear in theCi,j . Note also that it
is well-known [4] that the partial derivatives of a TPBS are
also TPBS.

In the sequel, we always consider uniform knot se-
quences. Besides, we take as many knots as possible (re-
garding the computational complexity) so that the flexibility
of the surface model is sufficient to approximate complex
shapes.

3. Previous Work

3.1. Cross-Validation

The goal of Ordinary Cross-Validation (OCV) [15, 16]
is to choose the regularization parameter so that the recon-
structed surface generalizes well. In other words, the recon-
structed surface must have a good behavior between the data
points. The optimal regularization parameter is the mini-
mizer of the so-calledOCV score:

λ∗ = arg min
λ∈]0,1[

OCV (λ). (15)

An example of the OCV criterion is given in figure 1a.
The OCV score is defined by fitting the model without the
ith data point, giving the parameter vectorp

[i]
λ . This is used

to predict theith measurement asf(xi, yi;p
[i]
λ ). This pre-

diction is compared against the actual valuezi. This is av-
eraged over then data points, giving:

OCV (λ) =
1

n

n
∑

i=1

(

f(xi, yi,p
[i]
λ ) − zi

)2

. (16)

It is almost impossible to directly use this definition of the
OCV as its evaluation for a single value ofλ requires the
reconstruction ofn surfaces. It is well-known [15] that there
exists a non-iterative formula that approximates closely the
OCV score:

OCV (λ) =
1

n

∥

∥

∥

∥

∆

(

1

1− ∆(Hλ)

)

(Hλ − I)z

∥

∥

∥

∥

2

2

(17)

whereI is the identity matrix,∆ the diagonal operator (i.e.
∆(u) is a square matrix havingu as its main diagonal and
∆(A) extracts the diagonal entries of matrixA as a vector)
andHλ the influence matrix:

Hλ = M

(

MTM +
(

λ
1−λ

)2

RTR

)−1

MT. (18)

Even with the non-iterative equation (17), two problems
remain. First, the amount of computation required to solve
the minimization problem (15) is still too heavy for large
datasets (sayn > 1000). Second, minimizing the OCV
score can be difficult. Indeed, this criterion is numerically
unstable. This has the effect to introduce high frequency os-
cillations (see figure 1b) . It is thus difficult to estimate the
criterion derivative which would be useful in an optimiza-
tion process such as gradient descent.
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Figure 1. (a) A typical cross-validation score
function. (b) High frequency oscillations re-
sulting of numerical instability of the cross-
validation score.

3.2. The L-Curve

The L-curve was introduced in [11]. An extensive re-
view of this approach can be found in [9, 10]. The idea of
this criterion is to find the best compromise between the
goodness of fit and the surface smoothness. To do so, these
two quantities are plotted against each other as functions of
the regularization parameter.

Let ρ(λ) = ‖Mp∗

λ − z‖ be the residual normand
η(λ) = ‖Rp∗

λ‖ be thesolution norm. The L-curve is a con-
tinuous curve parametrized by the regularization parameter
λ and defined by:
{(

ρ̂ = log ρ(λ), η̂ = log η(λ)
)

∈ R
2
+ | λ ∈]0, 1[

}

. (19)

The L-curve method chooses one of the maximizers of the
L-curve curvature, leading to:

λ∗ = arg max
λ∈]0,1[

κ(λ), (20)

whereκ is the curvature of the L-curve:

κ(λ) = 2
ρ̂′η̂′′ − ρ̂′′η̂′

(ρ̂′2 + η̂′2)
3/2

. (21)

When the L-curve has the shape of the letter L (see fig-
ure 2a), the ‘corner’ of the curve is well defined: the curva-
ture (figure 2b) has one maximum which corresponds to the
regularization parameterλ∗ we are searching for. Unfor-
tunately, the curvature often exhibits multiple maxima (see
figure 3). In such cases, it is not clear how to choose the
regularization parameter.
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